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The analysis of nanomechanical properties is becoming an increasingly useful tool in a large variety of 
fields, ranging from biology to polymer science. The Atomic Force Microscope, AFM, can bridge the 
information about morphology, obtained with outstanding resolution, to local mechanical properties. 
When performing an AFM nanoindentation, the rough force curve, i.e. the plot of voltage output from the 
photodiode vs. the voltage applied to the piezoscanner, can be translated into a curve of the applied load 
vs. penetration depth after a series of preliminary determinations and calibrations. The Young’s modulus 
of the sample can be finally extracted from the force curve, through a correct application of contact 
mechanics models. All the calibrations needed are thoroughly described in this work, together with the 
details about contact mechanics, in order to clarify the correct procedure needed for the analysis of 
nanomechanical properties through AFM nanoindentations. 
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1. Introduction 

Nanoindentation is a relatively new technique. Normally, nanoindentation tests are carried out using 
Depth Sensing Instruments, DSI. The Atomic Force Microscope, AFM, can also be used as a DSI, in 
order to perform nanoindentations and thus measure the Young’s modulus on the nanometer scale. When 
used as a microscope, the AFM tip is scanned laterally on the top of the sample surface while as a DSI 
the AFM tip is used as an indenter, in which case a force curve would be obtained by recording the 
applied load on the tip with the corresponding penetration depth. The load on the tip is applied through a 
bending cantilever, which is not usually stiff enough to indent metals or ceramic materials. For this 
reason, AFM nanoindentation is mainly useful to measure mechanical properties of soft matter, 
especially biological materials[1] and polymers.[2] In case of polymers in particular, it is used for the 
study of the mechanical properties of single phases in non-homogeneous systems as well as for the 
mapping of the Young’s modulus of samples characterized by structural variation thus becoming a 
powerful tool to bridge structure with properties. 
     However, rare papers tried to quantitatively measure the Young’s modulus of polymers directly from 
the force curve, i.e., from the plot of applied load vs. penetration depth. The cause of this general but not 
systematically quantitative use of AFM nanoindentations can be found in the number of calibrations and 
preliminary determinations needed to apply contact mechanics models to the rough force curve obtained 
from the nanoindentations, i.e., expressed as the output voltage from the position sensitive diode vs. the 
voltage applied to the piezoscanner. Several aspects, such as sample thickness and surface roughness, 
must be considered, and many parameters like cantilever normal elastic constant, deflection sensitivity, 
relationship between cantilever deflection and applied load, piezo aging, instrument compliance need to 
be accurately known for this rough force curve to be properly and correctly expressed as force vs. 
penetration depth. 
    Although a relatively large amount of literature is available,[3] some aspects of the numerous 
calibrations needed have not yet been clearly reported and the proper use of the technique is currently 
hard and not widespread. The procedure commonly followed in our laboratories to analyze the rough 
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force curve is addressed in this work, showing the pathway to obtain a reliable evaluation of the Young’s 
modulus of polymers on nanometre scale. 

2. Materials used and experimental set-up 

The materials studied in this work were chosen to cover a wide range of mechanical properties. These 
include rubbers (PPG-based), semicrystalline (iPP, HDPE, PTFE) and glassy polymers (PMMA, PC) 
having elastic moduli in the range 7-3000 MPa. 
     Poly (methyl methacrylate), PMMA, (Mw=120000) and Poly(propylenglycole), PPG, (Mw=725 and 
dispersion index 1.04) were purchased from Aldrich. Poly (carbonate), PC, (Mw=39000) and a research 
grade High Density Poly (ethylene), HDPE, were kindly supplied by DSM. iPP (Mn=75100, 
Mw=483000, Mw/Mn=6.4) was provided by Montell while a commercial grade PTFE, 50 µm thick film, 
was used as purchased from Goodfellow.  
     PMMA and PC samples were prepared by hot stage (Mettler-Toledo FP82HT with FP90 central 
processor). iPP samples were prepared with four cooling rates (2.5, 25, 110, 350 K/s) corresponding to 
the onset of the stable crystalline α-monoclinic phase, decreasing in amount with cooling rate, up to 350 
K/s where the onset of the metastable mesomorphic phase is observed[4]. PPG based rubber was 
synthesized by the authors according to literature[5]. 
     The AFM used was a Digital Instrument Nanoscope IIIA Multimode. The polymer morphology was 
studied in tapping mode at room temperature in the moderate tapping regime[6] (0.6 < rSP < 0.75). 
Tapping silicon cantilevers (model TESP of Digital Instruments Inc. with nominal cantilever elastic 
constant of 30 N/m; as well as SNS18 and SNS14 of Micromasch with nominal cantilever elastic 
constant of 40 and 3 N/m respectively) were used. Loads ranged from ca 0.06 µN up to 4 µN. 
     The Finite Elements Analysis was carried out using solid (for the tip) and shell elements (for the 
cantilever) in the MARC 6.0 software package. 
     Scanning Electron Microscope images were collected with a Philips XL30 ESEM. 

3. AFM calibrations and instrumental issues 

Film thickness limits the scale on which the nanoindentations can be performed, because with too deep 
indentations the mechanical behaviour would result from the coupled sample and substrate properties[7]. 
Without going to very accurate analysis (see, e.g., Hsue and Miranda[8] and references therein), a rule of 
thumb to avoid substrate effects would be to work at penetration depths less than one tenth of the total 
film thickness, a condition which is more than satisfied by the films used in the present work. 
     Sample roughness can also introduce distortion in the force curve, the contact developing between 
sample asperities and the tip. Studies made regarding the influence of roughness on indentation of metals 
date back to Tabor,[9] while recent works include those made on “roughened polymers”.[10] As 
discussed in the following, this might be related to the onset of torsional momentum, causing a twist of 
the tip[11]. So, to overcome these limitations, samples with very low local roughness (in the range 1-3 
nm on a 1µm by 1µm scale) were prepared. 
Cantilever normal elastic constant, kn, is a quantity that is used to estimate the instantaneous applied 
load, F, from the experimentally available cantilever deflection, δ, through the following relation:  

 δnkF =  (1) 

Typical deviations of up to ±200%[12] from the nominal value supplied by the producer are possible 
when thin cantilevers are used. This error will obviously lead to a wrong evaluation of the applied load in 
the nanoindentation, which means that kn should be known with good accuracy. Complex and refined 
methods, such as measuring the static deflection caused by spheres of known mass attached to the 
cantilever,[13] have been proposed for its calibration. However, most of these methods are hardly 
suitable for a routine and high-throughput use of AFM nanoindentations. 

©FORMATEX 2007
Modern Research and Educational Topics in Microscopy. 
                                  A. Méndez-Vilas and J. Díaz (Eds.)

738

      _______________________________________________________________________________________________



  

Polymers are often relatively stiff and thus require the application of loads in the order of a few 
microNewtons for their nanoindentations. This implies that stiff rectangular tapping cantilever can be 
used. The simple geometry of these cantilevers introduces less errors in the elastic constant evaluation 
from the knowledge of cantilever geometry, compared to the questioned parallel beam approximation for 
the compliant V-shaped cantilevers used for contact imaging. 
The method introduced by Green et al.[14], which has previously been proven to be accurate, is used in 
the present work, see eqs. 2 and 3. It consists of measuring the length, L, and width of the cantilever from 
an SEM image. The cantilever thickness, t, is then evaluated from: 

 
212

162.0 



=

E
Lf

t r ρ  (2) 

Where fr, ρ and E are the cantilever resonance frequency, density and Young’s modulus, respectively. 
Two exemplar SEM images of the cantilever are shown in Figure 1. 
 
 

  
 
The first two entries of Table 1 compare the length and width provided by the manufacturer with those 
read from the image in Figure 1A. It can be seen that the differences are noticeable and this turns out to 
be very important since cantilever thickness is calculated based on these two values in addition to the 
cantilever resonance frequency. In fact, the table also shows the calculated thickness of 3.2 and 3.9 µm 
respectively obtained using the manufacturer data and length read from SEM. Furthermore, respectively 
comparing these calculated values with the true cantilever thickness (3.8 µm, see Figure 1B), error 
values of 15% and 2.5% are obtained showing a good agreement for the latter case, the small error being 
probably due to the non-rectangular cantilever shape at the apex. 
 

Table 1  Comparison of length and width as provided by the manufacturer and as measured from SEM 
images. The corresponding evaluated thicknesses and respective errors are also indicated. 

Length, µm 125 (1) 138 (2) 
Width, µm 30 (1) 38 (2) 

Evaluated thickness, µm 3.2 3.9 
Error* 15% 2.5% 

(1) from producer; (2) from SEM images of the cantilever 
* error of the evaluated thickness with respect to the thickness measured through SEM images 

 
The cantilever normal elastic constant obtained from theoretical models has also been compared to that 
from numerical simulations. However, as it can be observed in Figure 1A, the cantilever shape is not 
exactly rectangular, but rather trapezoidal. This feature has been properly taken into account for further 
numerical simulations, as shown in Figure 2 where the cantilever shape used for simulation is depicted, 
thus trying to keep it as close as possible to the real shape observed in SEM, together with the mesh 
used. 
 

Fig. 1 SEM images of a 
representative cantilever, used 
to measure its length, width 
and thickness as indicated 
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The simulated elastic constant (as obtained by numerical analysis) was compared to the one estimated 
from the theoretical solution of the mechanical problem consisting in a trapezoidal section cantilever 
bending under load. In this latter case, the normal cantilever elastic constant is evaluated through: 

 
3

3
L
EI

k G
n =

 (3) 

Where IG is the momentum of inertia for the cantilever section, including, among other quantities, also 
the cantilever width.  
     Considering the real trapezoidal cantilever section, a problem arises for numerical simulations, since 
solid elements used to model the bent sides of the cantilever are less accurate. A slightly different section 
is therefore needed, as a step-wise border, named “simplified section” in Table 2. In this case, the 
mismatch between the analytical and the numerical solutions is fairly severe, amounting to 15%.   
Therefore, a further test was attempted to check whether this error is due to the simplification used in the 
numerical simulations or to other problems connected with theoretical modelling. The cantilever section 
was then assumed to be rectangular, allowing in this case a good accuracy for numerical simulations. The 
agreement between analytical and numerical results in this case is perfect, with an error of only 0.4%. 
One can then safely infer that the accuracy of the theoretical solution, even for the complex trapezoidal 
section, is more than satisfactory. 

 
Table 2  Comparison between the elastic constant evaluated by Finite Element Analysis and the one 
evaluated from the theoretical problem for two different geometries. 

 Analytical [N/m] FEM simulation [N/m] Error 
Elastic constant – 

Rectangular section 
52.7 52.5 0.4% 

Elastic constant – 
Simplified section 

37.7 32.1 15% 

 
The linear relationship between cantilever deflection and applied load (eq. 1) was also checked by means 
of numerical simulations and the results, although not shown here, indicate that the relationship is very 
accurate up to cantilever deflections of  140 nm. 
     A further remark concerns the cantilever torsion[11]. Indeed, the cantilever may twist during 
indentation even if perpendicular loading is preserved by instrumental settings. This happens, especially 
at the start of the indentation, because of torque arising from the not perfectly vertical loading of the tip 
due to sample roughness. The torsional elastic constant (kt) can be calculated by the formula[12]: 

 
)1(3

2 2

ν−
=

Lkk nt
 (4) 

where ν is cantilever Poisson ratio. The equation predicts a torsional constant in the order of 2.40•10-7 
Nm/rad assuming typical normal elastic constant of 30 N/m and cantilever length in the order of 125 µm. 
The typical order of magnitude for loads applied during nanoindentations is in the order of 1 µN. The 
torque applied on the tip can then be estimated to be 10-11 Nm assuming a typical value of 10 µm for the 

Fig. 2 Finite Element 
Simulation of the AFM 
cantilever. On the left, 
the bare geometry is 
depicted while the mesh 
used is shown on the 
right  
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tip height. Finally, the twist of the cantilever can be estimated, from the ratio of the torque and kt, to be in 
the order of 0.024 deg. Since this value is very small, the phenomenon has been neglected. 
     The lateral displacements have been disregarded as well because the lateral elastic constant is usually 
several orders of magnitude higher than the normal one[12], producing negligible lateral displacements.  
Because the motion of the piezo in the z-direction and the cantilever deflection are quite small compared 
to the total ranges of motion, the error due to photodiode non linearity is small[15] for the motions used 
during these indentation tests and have been also ignored. Slight piezo aging between calibrations is 
estimated to give errors much smaller than 1 nm[15] and it has been ignored as well. 

 
 
Deflection sensitivity is another important parameter that needs calibration. A rough AFM force curve is 
a plot of piezo displacement vs. the output voltage from a position sensitive photodiode. The photodiode 
is used to monitor the cantilever deflection by an optical lever arm system. Therefore, this voltage has to 
be calibrated so that it can be converted into cantilever deflection. This is done by using a hard material  
that could not be indented by the tip, so that the cantilever deflection equals the piezo displacement. The 
deflection sensitivity, Dsens, i.e. the conversion factor for translating the voltage into cantilever deflection, 
will then be obtained from the slope of the plot of the voltage against the piezo displacement. However, 
the displacement calibration can vary greatly with the set-up and alignment of the cantilever.[11] Due 
consideration was therefore given to this phenomenon and as such, the deflection sensitivity was 
calibrated after each set of indentations thus obtaining an accurate calibration regardless of changes in 
the set-up or laser alignment. Measurement of the deflection sensitivity was also necessary at each tip 
velocity, because, as shown in Figure 3, the sensitivity changes with the piezo displacement velocity[15] 
as well as with the amount of cantilever deflection, the changes being considerable at low velocities, 
while remaining almost constant at higher frequencies.  
 

  
 
The non-linearity of piezo displacement can also produce inaccuracy. However, maintaining a constant  
range of travel was found to yield consistent results for repeated measurements.[15] As shown in Figure 
4, the non-linearity, defined as (z-δ)/z, with z being the piezo displacement, is bounded to 2% for piezo 

Fig. 3 Deflection sensitivity, obtained from the 
slope of a force curve performed on a hard 
material, strongly depends on frequency. 

Fig. 4 Deviation of piezo displacement, 
measured by cantilever deflection on a hard 
material, from linear dependence on applied 
voltage.
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displacements above 20 nm which is acceptable considering that a force curve is usually collected at 
much higher values of  z. 
     The results are finally corrected for instrument compliance, i.e., the cantilever compliance in this 
case. Assuming no displacement of the material before contact, the penetration depth, p, can be obtained 
from[3] 

 sensDFzzp /−=−= δ  (5) 

Tip shape was reconstructed by blind estimation, following the theoretical[16] and numerical[17] 
implementation by Villarrubia and being aware of AFM experimental problems[18]. Tip geometry blind-
estimates were performed every time by imaging an aluminium tip-characterizer sample, at a scan 
frequency of 0.8 Hz and with an image resolution of 512x512 pixel. 
A further remark concerns the loading history applied during AFM nanoindentation. As it may be 
obvious, nanoindentation by AFM is done by moving the sample towards the cantilever tip with a 
constant velocity. Upon contact, indentation starts and the cantilever bends while applying a load. Due to 
this mechanism, the indentation is neither load controlled nor displacement controlled. Although 
penetration depth can be obtained using eq. 5, the rate at which this happens cannot be imposed but 
simply depends on the material. 

  
The concept that, during AFM nanoindentations, the deformation takes place mostly in the elastic 
range[2] allows also to rationalize the shape of the curves in Figure 5 where the applied load is plotted 
against time. Once stated that applied load and penetration depth are related through a power law with 
exponent 1.5, as it was shown in ref [2], one can notice that cantilever deflection is proportional to 
applied load through the cantilever elastic constant, eq. 1, and time is proportional to piezo displacement, 
through the voltage saw tooth applied to the piezo. Thus, recalling also eq. 5, 

 )()( 5.1pppzt +∝+∝∝ δ  (6) 

And 

 
dF

dp
dF
dp

dF
ppd

dF
dt 5.15.1 )(

+∝
+

∝
 (7) 

The last term on the right is inversely proportional to the elastic modulus[2] and therefore is a constant 
(see also the discussion in the following paragraphs). Hence, it is responsible for a linear increase of the 
load with time. The term dp/dF on the other hand is responsible for a non-linear loading history which 
becomes more relevant if penetration increases more with increasing applied load, i.e. when the material 
is softer. This could be the explanation why the curve for PMMA in Figure 5 is almost linear while that 
for PPG rubber shows significant deviations from linearity. 

Fig. 5 The complex loading history 
applied during an AFM nanoindentation 
depends on material mechanical 
behavior, see eqs. 6 and 7 
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4. Analysis and modelling of contact mechanics 

Once the abovementioned calibrations and preliminary determinations are correctly performed, it 
becomes possible to convert a rough force curve into a plot of applied load vs. penetration depth. The 
common procedure used to analyze the force curve is the method of Oliver and Pharr[19], which, based 
on the assumption that the unloading takes place exclusively in the elastic field, uses the results of the 
elastic analysis of Sneddon. According to Sneddon,[20] the load is supposed to be proportional to the 
square of the penetration depth, for the case of contact between a cone and an elastic half space. to the 
square of the penetration depth, for the case of contact between a cone and an elastic half space. Then, 
the Young’s modulus of the sample from nanoindentations is evaluated using the following equation[19]: 

 
cr

AES
π
2

=  (8) 

Where S, contact stiffness, is the derivative of the load with respect to the penetration depth evaluated at 
maximum load, Ac is the contact area, and Er is the reduced modulus, i.e., the combination of elastic 
moduli and Poisson ratio of both the sample and the indenter materials.[19] 
Although this approach is widely used for metals and ceramics, limitations to its application on polymers 
have been recently reported in the case of iPP[21] and PET[22]. As an example, Figure 6 shows the same 
issue for nanoindentations obtained on a HDPE sample at several cantilever deflections, which are 
equivalent to applied loads, see eq. 1. 
It is easy to note that δ ≈ z - z0 is found on unloading. Here z0 is a constant and is approximately equal to 
the value assumed by z during unloading when δ vanishes. Recalling eq. 5, this means that when the load 
is removed, penetration depth remains almost unaltered so that elastic recovery is very poor and as a 
result, the slope of the unloading portion of F vs. p curve is very large and, in particular, does not scale 
with a power law of exponent two. This condition is reported in literature[23] as characteristic of plastic 
materials. However, this cannot be the case for polymers because, on the contrary, the AFM, allowing 
one to collect high-resolution images of the residual imprint after the nanoindentation, shows that the 
plastic depth is in most of the cases much smaller than the penetration depth under full load[2].  

  
 

A different approach is therefore necessary, in order to extract information about the nanometre scale 
mechanical properties of polymeric samples from AFM nanoindentations. 
     Performing nanoindentations at different loading rates results in very different sample’s mechanical  
behaviour. In particular, slow nanoindentations leave a relatively large residual imprint on the sample, 
roughly half of the penetration depth under full load, pointing out the occurrence of complex mechanical 
phenomena, like viscoelastic, plastic, viscoplastic ones. On the other hand, fast nanoindentations result in 
small residual indents, up to one fifth of the instantaneous penetration under full load, thus indicating 
that the mechanical contact for polymers mostly takes place in the elastic range.[2] 
Based on this consideration, force curves collected on several materials studied in this work were 
analyzed by means of Sneddon’s purely elastic contact mechanics model. 

Fig. 6 Unloading nanoindentation curves 
obtained on a HDPE sample. The slope of the 
curves is found to be approx. equal to 1. 

Modern Research and Educational Topics in Microscopy. 
A. Méndez-Vilas and J. Díaz (Eds.) ©FORMATEX 2007

743

      _______________________________________________________________________________________________



  

 

     Unlike the Oliver and Pharr procedure, we did not use the equations for the contact between an 
ideally sharp cone and an elastic half space. The reason for this choice can be easily found by recalling 
that a real indenter cannot be considered to be ideally sharp, since rounding is unavoidable on the very 
first nanometres of the apex because of manufacturing technological constraints. 
An alternative uses a dimensional analysis of the indentation quantities[24] involved in a conical 
indentation of an elastic-plastic material with strain hardening which, for indentations in the nanometer 
scale, must introduce a length scale for apex rounding. The following dimensionless equation can then be 
derived:[24] 

 











Π= θ

σ
,,,2 n

Ep
l

pE
F

sample

Y

sample

  (9) 

making the exponent, which scales the applied load and the penetration depth, to deviate from two. The 
strain hardening exponent n, the sample Young’s modulus Esample, the yield stress σY, the indenter 
opening angle θ and the length scale l are the relevant quantities in equation 9. The length scale l can be 
identified by modelling the tip as a paraboloid of revolution, which, in cylindrical coordinates, is 
described by 

 qz42 =ρ  (10) 

where q is a constant proportional to the curvature. In this case the length scale is represented by the 
curvature radius at the apex which, from equation 10, is equal to 2q. 

 
The solution for the elastic contact, given by Sneddon[20] satisfies both, the need to introduce a length 
scale and an exponent smaller than two in  

 ( ) 2/13
2 2
)1(3

4 qpEF
ν−

=  (11) 

showing that the load scales with the penetration depth with an exponent of 1.5. Since the Sneddon 
theory deals with an elastic contact, it adequately describes the force curve in the case of the PPG rubber  
while it fails to do so for the elastic-plastic material, i.e. lead (see Fig. 7). As expected, the two force 
curves show different slopes in a logarithmic plot of the penetration depth vs. applied load: almost equal 
to 1.5 for the PPG rubber and 2 (as predicted for an elastic-plastic contact[25]) for lead. Moreover, the 
plots are linear, confirming power law relations.  
Figure 8 finally shows a comparison among the Young’s moduli measured through standard tensile tests, 
black bars, and the Young’s moduli calculated from nanoindentations performed at various piezo 
displacement rates. It is clear that the evaluated elastic moduli come closer to the macroscopic value with 
increasing loading rates. However, this result is not surprising since mechanical phenomena other than 

Fig. 7 Logarithmic plot of applied load vs. 
penetration depth collected on two polymer 
samples: a PPG rubber and an iPP sample 
solidified at 110K/s. The typical slope of 1.5 is 
compared to a metal sample, lead, for which a 
slope of 2 is measured 
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elastic becomes negligible at high loading rates,[2] and therefore the assumption of elastic contact in 
Sneddon’s theory is better fulfilled. 

 
 
A possible criticism arising towards the results shown in Figure 8 is due to the fact that a macroscopic 
tensile modulus is compared to the one calculated from nanoindentations. In this latter situation, the 
Young’s modulus should likely be closer to the compression modulus rather than the tensile modulus, 
the former being approx. 20% higher than the latter.[26] In view of the increasing trend of the 
nanoindentation modulus with the loading rate shown in Figure 8, one might expect that this further gap 
of 20% could be compensated if nanoindentations were collected at higher loading rates (even higher 
than 18 µm/s) in order to achieve a completely elastic contact as suggested by the same figure. However 
under such circumstances nanoindentations performed with piezo-displacement rates higher than 18 
µm/s might suffer from instrumental limitations arising form inertia contributions of the piezo scanner 
upon motion reversal. 
However, the trend shown by Figure 8 goes in the right direction and implies that an accurate 
measurement of the Young’s modulus on nanometre scale is possible through AFM nanoindentations. 
This is confirmed by the comparison with bulk elastic moduli of the samples once their homogeneity is 
ensured. 
This possibility turns out to be very important for a variety of systems, keeping in mind the need for 
miniaturization in several scientific fields (first of all in semiconductors and thin film applications), but 
also when a hierarchy of morphologies is present as in the case of most natural materials. 
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