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We address the problem of optimal registration decisions during 3D medical volume reconstruction and 
their impact on anticipated accuracy of aligned images, uncertainty of obtained results, repeatability of 
alignment, and computational requirements. The registration decisions include image size used for regis-
tration, transformation model, invariant registration feature (intensity or morphology), automation level, 
evaluations of registration results (multiple metrics and methods for establishing ground truth), and as-
sessment of resources (geographically local or distributed computational resources and human expertise). 
Our goal is to introduce data-driven mechanisms for evaluating the tradeoffs between accuracy of 3D vol-
ume reconstructions and registration variables. In this work, we present links between registration deci-
sions and 3D reconstruction results in terms of accuracy, uncertainty, consistency and computational 
complexity characteristics. We also illustrate examples of optimizing image size and transformation 
model by using web-enabled software tools. We have built these software tools to enable geographically 
distributed researchers to optimize their data-driven registration decisions. The software is based on using 
web services and is available to the general community. 
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1. Introduction 

The problems of 3D volume reconstruction and medical cross section registration have been approached 
by an overwhelming number of researchers over the past several decades [5][6][9][10][11][13] and re-
main still a very challenging problem. There are several survey papers about registration approaches that 
include selection of registration variables based on user decisions [2][8][14]. In this paper, we focus on 
optimal selections of registration variables that are inherent parts of 3D volume reconstruction process. 
In our work, the 3D volume reconstruction problem is defined as a registration problem without fiduci-
ary markers [8]. The goal of 3D reconstruction is to form a high-resolution 3D volume with large spatial 
coverage from a set of spatial tiles (small spatial coverage and high-resolution 2D images or 3D cross 
section volumes. Our objective in this work is to describe the impacts of registration decisions made 
during 3D volume reconstruction and outline data-driven simulations that can support optimal registra-
tion decisions.  
 Based on our knowledge, there has been limited work on understanding accuracy, uncertainty, consis-
tency and computational complexity characteristics of 3D volume reconstruction and their relationships 
to registration decisions. The past work usually addressed only certain aspects of registration decisions, 
for example the choice of transformation models [8], the combination of invariant registration features 
[18], the image data quality evaluation metrics [15], the choice of shape metrics [19], or the process of 
geometric (spatial registration related) and radiometric (intensity related) adjustments [12]. The past 
work has originated primarily from the computer vision community when tackling the problem of mat-
cing and alignment from points and frames while modelling rigid motion of objects. For example re-
searchers, such as Pennec and Thirion [16][17] have developed a theoretical model defining the relation-
ship between uncertainty of a rigid transformation applied to a set of 3D points or 2D frames and the 
registration accuracy. However, the model is defined for only a very small subset of typical registration 
decisions. A researcher performing 3D volume reconstruction is usually facing registration decisions 
about (1) image size used for registration, (2) transformation model (e.g., rigid, affine or elastic), (3) 
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invariant registration feature (intensity, morphology or a combination of the two), (4) automation level 
(manual, semi-automated, or fully-automated), (5) evaluations of registration results (multiple error met-
rics and methods for establishing ground truth), and (6) assessment of resources (geographically local or 
distributed computational resources and human expertise). Thus, there is a need to provide a mechanism 
for making optimal registration decisions, as well as to build a good understanding of the decision im-
pacts on registration accuracy. Our work addresses this need by developing data-driven web-enabled 
analyses to support optimal registration decisions during 3D volume reconstruction. The analyses can be 
viewed as trade-off studies of multiple registration decisions in terms of registration accuracy.  
 This paper describes data-driven optimization approaches to four registration decisions including 
image size selection, rigid or affine transformation model, intensity or morphological invariant feature 
selection, and manual (pixel-based) or semi-automated (centroid-based) automation level. The reason for 
using data-driven approaches lies in the diverse appearance of objects/specimens of interest, and the 
wide variations of specimen preparation techniques, imaging modalities, and specific instrumentation 
characteristics just to name a few. These variations are extremely difficult to model analytically with any 
generality whatsoever. Thus, we describe the problem by presenting the links between registration accu-
racy and variables. Then, we present examples of data-driven simulations that support optimal selection 
of registration variables.  
 The paper is organized as follows. First, we present the CLSM imaging and data in Section 2. Next, 
we describe registration decisions in Section 3.1 and their impacts on (a) anticipated accuracy of aligned 
images, (b) uncertainty of obtained results, (c) repeatability of alignment, and (d) computational re-
quirements in Section 3.2. We use illustrations of data-driven analyses in order to demonstrate ap-
proaches to gaining better understanding of the relationships between registration variables and the qual-
ity of 3D reconstruction results. Section 4 summarizes our work.  
 

2. Confocal Laser Scanning Microscopy Data 

In order to demonstrate the issues related to selecting registration variables, we consider 3D volume 
reconstruction of blood vessels in histological sections of uveal melanoma [3] from paraffin-embedded 
serial sections labeled with antibodies to CD34 and laminin and studied by confocal laser scanning mi-
croscopy (CLSM) imagery  [1][7]. The set of spatial tiles is acquired by CLSM and consists of images 
that came from one cross section (same axial coordinate) in different lateral coordinates or multiple cross 
sections of a 3D volume (different axial coordinates). The 3D volume reconstruction objectives are to 
register (stitch together) spatial tiles that came from the same cross section, i.e., image mosaic, and align 
spatial tiles from multiple cross sections with the end use for visual inspection or quantitative analysis 
[1]. An overview of processing steps to create a visual display of a specimen in-silico is illustrated in 
Figure 1. 
 When the image tiles are stitched (mosaicked), one typically assumes that: 
• Identical frame indices in multiple image tiles would have the same physical axial depth if they 

came from the same physical cross section. 
• Structural deformation is negligible in overlapping regions of spatially adjacent image tiles when 

compared at the same depth (e.g., frame index). 
• Image tiles are acquired by only translational motions of the microscope stage to capture high reso-

lution images across entire specimen. 
Similarly, when images are aligned, several properties of acquired images could be assumed:  
• All physical sections are assumed to be parallel to the same two-dimensional plane. 
• During slide preparation, tissue slide could be only rotated, translated, and slightly sheared.  
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Figure 1. An overview of processing steps to create a visual display of a specimen in-silico that includes 3D volume 
reconstruction. The red arrows denote possible errors and uncertainties due to the sequence of processing steps. 
 

3. Registration Decisions  

The overview of most common registration decisions is provided in Figure 2. The list of registration 
decisions was introduced in Section 1 (image size, transformation model, invariant feature, automation 
level, evaluations of registration results, and assessment of resources). In Figure 2, one should view 
black arrows as possible decision outcomes during the registration process and hence any possible com-
bination of user decisions would characterize the obtained registration result. Some of the decisions 
could be easily expanded, e.g., other transformation models. Other decisions could be elaborated, such as 
methods for establishing ground truth could be classified into visual inspection, comparison with ground 
truth data, or measuring the degree of deviations from assumed data model. The purpose of Figure 2 is to 
present basic registration decisions rather than an exhaustive list of possible decision selections. 
 The user-driven registration decisions define the complexity of (a) registration model, (b) model pa-
rameter estimation, (c) registration computations to be performed and (d) evaluation strategy. For exam-
ple, the case of a manual registration (alignment) of two image sub-areas containing a few features (visu-
ally salient pixel arrangements) using rigid transformation (rotation and translation) by overlaying two 
sub-areas and visually assessing the quality of alignment would be considered as a low complexity regis-
tration. It would use the simplest transformation model (rigid), subjective parameter estimation (visual), 
no computation (manual), and visual method for evaluating registration quality. In contrast, the case of a 
fully-automated alignment of two large images containing several millions of features using affine trans-
formation (rotation, translation, scale and shear) by exhaustively evaluating the range of affine transfor-
mation parameters based on invariance of intensity (e.g., using normalized cross correlation or normal-
ized mutual information) would be considered as a high complexity registration. Although there exist 
fast implementations of the intensity-based cross correlation methods, e,g., pyramid-based techniques, 
these methods cannot be applied in the case of CLSM due to large intensity heterogeneity. Registration 
uses consistent parameter estimation by evaluating invariance of intensity, consuming significant compu-
tational resources and performing registration quality evaluations using mathematically defined metrics 
and based on a set of assumptions about data. 
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Figure 2: Registration decisions and their impact on registration results. 
 

3.1. Variables for Registration Decisions 

Image Spatial Size: From a medical user view point, one would like to obtain 3D volume reconstruc-
tions over a large spatial area at a high spatial resolution, and with the best possible visual alignment of 
all salient image features. Let us assume that the visual alignment of salient image features is measured 
by a normalized correlation coefficient. Then, our goal is to provide data-driven analysis of input data to 
understand the tradeoffs between these two conflicting requirements, such as to maximize aligned image 
area and its measure of alignment goodness (e.g., normalized correlation coefficient) with other images. 
In order to compute a data-driven dependency between normalized correlation metric and image sub-area 
size, at least two frames have to be aligned otherwise other registration unknowns would be inseparable 
from the variables under our scrutiny. In the case of CLSM, we can establish the data driven dependency 
by using any two frames from one stack of images. The assumptions are that these two selected frames 
are representatives of the two frames from two adjacent cross sections without any distortion due to 
specimen slicing, and the frame-to-frame morphology and intensity changes in the selected frames from 
one sub-volume are similar to those in the adjacent sub-volumes.  
 Figure 3 (a) shows a method supporting registration decisions by uploading two images from a 3D 
volume, selecting a sub-area of interest, and then it reports a visualization of a correlation coefficient as a 
function of incrementally increasing sub-area size, as shown in Figure 3(b) The correlation coefficient is 
used as registration accuracy metric in this case.  If two identical frames would be compared then the 
correlation metric value equals to one. The frames that would be completely dissimilar would lead to the 
value of zero. 
 

©FORMATEX 2007
Modern Research and Educational Topics in Microscopy. 
                                  A. Méndez-Vilas and J. Díaz (Eds.)

934

      _______________________________________________________________________________________________



  

   
Figure 3 : Supporting registration decisions about image sub-area size. Left – two image frames from the same 
CLSM stack with the overlay of all considered sub-areas. Right: A graph of the normalized correlation as a function 
of sub-area size (two curves refer to two correlations of green and red bands in the original image frames).  
 
Transformation Model: Let us assume that a class of CLSM images acquired from similar tissues can 
be perfectly registered by an unknown transformation with N parameters. The N parameters define the 
order of transformation model. It is well known that a higher order transformation model than N would 
lead to data overfitting while a lower order transformation model than N would lead to large registration 
errors. In our case, overfitting would lead to distortions in the transformed image that could never happen 
in the original cross sections although the registration error would be small and indicate a good align-
ment. Using lower order transformation model might likely never satisfy the transformation error defined 
as user requirements.  
 The tradeoffs between transformation model complexity and registration error are usually resolved by 
practitioners based on a good understanding of medical specimen preparation. For example, for imaging 
cross sections of solid and hard specimens, rigid transformation might be appropriate (rotation and trans-
lation). If cutting the specimen introduces additional shear and scale changes, then affine transformation 
would be appropriate (rotation, translation, scale and shear). Our goal is to provide data-driven analysis 
of input data to understand the tradeoffs between these two conflicting requirements, such as to minimize 
transformation model complexity and registration error.  
 Figure 4 shows a method allowing uploading two images to be registered, manually placing disks of 
variable size over visually matching features, and selecting rigid or affine transformation to compute the 
registered image pair. The reported registration transformation error is shown in Table 1, and the level of 
distortion in the overlaid registered images with registration disks are shown in Figure 4 for aiding the 
choice of registration model. 
 

Table 1: Summary of registration errors obtained using rigid and affine transformation models for the same set of 
four matching pairs of points shown in Figure 4. The residual errors X, Y and (X, Y) are computed as a sum of 
squared differences between the transformed coordinates of image 1 and the user chosen coordinates in image 2. The 
original residual error (X, Y) before any transformation was equal to 12.782. 
 

Transformation 
Model\Residual Error Error X Error Y Error (X,Y) 

Rigid 1.528 1.802 1.225 
Affine 0.927 1.581 0.935 
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Figure 4: Transformation model selection. Target image with blue discs aligned with image features (left), source 
images (to be transformed) with red discs aligned with image features (middle) and transformed source image using 
an affine transformation model estimated based on the pairs of blue and red disc centroids (right). 
 
Invariant Registration Feature: Registration features can span a wide range of image and volume 
attributes. For instance, image attributes would include pixels, edges, contours, image segments and their 
characteristics (centroids, sizes, etc.), and homogeneous or texture intensity profiles. Volume attributes 
would characterize 3D structures in each CLSM sub-volume, such as centroid trajectories of cylindrical 
structures, surface and volume descriptors, or intensity profiles of structures’ surfaces and volumes. In 
general, these registration features can be divided into morphological (related to 2D or 3D shape) and 
intensity (related to fluorescent magnitude) attributes. One would like to understand which category of 
registration features is more invariant for a particle set of images and the degree of uncertainty intro-
duced by making an assumption about feature invariance.  
 The challenge lies in defining and comparing metrics evaluating the degrees of change. One could 
choose the normalized correlation metric as a statistical measure of intensity similarity for two images of 
the same spatial size. In the case of morphological features, the degree of morphological distortion is 
related to shape, and traditionally shape characteristics have been obtained (a) from local geometry 
called landmarks, (b) from a set of sampled boundary points, (c) by boundary-representing basis function 
coefficients, or (d) by hybrids of boundary and other curve loci with landmarks, and other sampling 
schemes, as overviewed in [11]. Given the most appropriate choice of one morphological and one inten-
sity feature metrics, it is not obvious how to compare the metric values. The current approaches usually 
select one or the other metric, or a sequential application of the two metrics.  
Automation Level: The goal of this step is to decide the level of automation based on the registration 
accuracy, computational resources, and geographic locations of needed 3D volume reconstruction exper-
tise. We approached this problem as follows: The evaluations of registration accuracy at multiple levels 
of automation require involvement of human subjects and careful preparation of ground truth (baseline) 
data. We have conducted a user study in the past using manual or semi-automated registration techniques 
[20] and decided to use the semi-automated (segment centroid based) automation level. By web-enabling 
the developed software, other researchers can perform similar studies to the study published in [20] and 
support their data-specific decision about the level of automation.  
 The problem of accessing necessary computational resources and combining geographically distrib-
uted expertise was solved by developing a web service-based mechanism for registration that provides 
access to image data from the location with 3D volume reconstruction expertise and performs computa-
tion at the location with computational resources. Other researchers would be able to use the same proto-
type developed for our 3D volume reconstruction and evaluate their data-driven decision about an appro-
priate automation level. 
Evaluation of Registration Results: Ideally, one would like to perform data-driven evaluations with all 
possible registration accuracy metrics, all registration methods and approaches, and with unlimited com-
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putational resources. Each researcher would assess his/her data variability and quality with respect to the 
3D reconstruction task under multiple registration assumptions and without computational constraints. 
While this is currently not feasible, a limited understanding might be obtained by following the data-
driven evaluations presented above.  
 

3.2. Impacts of Registration Decisions  

Registration decisions during medical cross section alignment have a great impact on (1) anticipated 
accuracy of aligned images, (2) uncertainty of obtained results, (3) repeatability of alignment, and (4) 
computational requirements. As illustrated in Figure 2, the registration decisions affect (a) spatial distri-
bution of registration error (global vs. local registration), (b) registration error composition (model over-
fitting, mosaicking x-y error, and alignment z error), (c) computational requirements on registration 
(invariance assumption and its degree of freedom, model complexity, search space to optimize parame-
ters) and (d) validity of the obtained results (robustness of a registration model with respect to data de-
viations,  quality of evaluation criteria).  
Alignment Accuracy: The accuracy of aligned images can be measured either by visually inspecting 
anticipated structures or by defining quantitative metrics to evaluate accuracy with respect to ground 
truth data (or a data model defined a priori).  
Uncertainty of Alignment Results: Multiple registration decisions impact alignment uncertainty due to 
the following discrepancies between registration models and actual data distortions being compensated 
by the models: (1) the tradeoffs between global or local registration fit (image spatial size decision), (2) 
the issues of transformation model over-fitting (transformation model decision), (3) the degree of as-
sumed intensity and morphological invariance (feature invariance decision), (4) the size of parameter 
search space and the algorithmic robustness to model deviations (automation level decision), and (5) the 
goodness of evaluation criteria for a registration problem. These uncertainties are very difficult to evalu-
ate analytically and are very much data specific. Data-driven evaluation software tools might provide 
computer assisted approach to gain an insight about the anticipated result quality. The future approaches 
to uncertainty modelling will likely combine theoretical work on defining appropriate metrics (e.g., nor-
malized cross correlation or normalized mutual information [4] for intensity) and the experimental work 
on designing data-driven methods.  
Repeatability of Alignment: Repeatability can be viewed as the consistency of alignment results ob-
tained using multiple methods and processes [21]. The alignment processes usually include humans and 
computer algorithms. In general, alignment repeatability varies depending on the level of automation, 
registration methods and the complexity of human input. The higher automation level leads to better 
convergence of registration methods to global extreme [18]. In the semi-automated case, the less com-
plex human input will lead to higher alignment accuracy.   
 The repeatability issue is usually addressed by performing studies using human subjects [20]. The 
studies are based on either a class of images acquired by the same imaging techniques and from similar 
specimens or a class of synthetic images that simulate different degrees of deviations from a registration 
model. Algorithmic repeatability is often evaluated together with its robustness to test that the algorithm 
avoids getting trapped in local minima, and can reliably find the best global minimum in complex land-
scapes defined by objective functions. Similarly, any measured repeatability due to automation is based 
on (a) making assumptions about acquired data, for instance, assuming feature invariance, (b) allowing 
only a subset of possible registration transformations (model constraints), or (c) searching only a sub-
space of possible transformation parameters. Thus, usually the robustness and accuracy of cross section 
alignment is decreasing with an increasing level of automation for data sets deviating from the automa-
tion model and violating the registration assumptions.  
Computational requirements: The computational requirements of alignment are directly proportional 
to the level of automation, the complexity of transformation model, and to the search space of transfor-
mation parameters. Furthermore, computational requirements for accommodating all researchers inter-
ested in using the same software with multiple registration tasks also have to be addressed.  
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4. Summary 

In this paper, we addressed the problem of optimal registration decisions during 3D medical volume 
reconstruction. The registration decisions of interest included (1) image spatial size, (2) transformation 
model, (3) invariant registration feature, and (4) automation level. We demonstrated two examples how 
to analyze the decisions (1) and (2) using data-driven analyses. We have also built software tools for 
geographically distributed researchers to optimize their data-driven registration decisions by using web 
services and supercomputing resources. The software tools are available to the general community at 
http://isda.ncsa.uiuc.edu/MedVolume/. 
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